• This is default featured slide 1 title

    Go to Blogger edit html and find these sentences.Now replace these sentences with your own descriptions.This theme is Bloggerized by Lasantha Bandara - Premiumbloggertemplates.com.

  • This is default featured slide 2 title

    Go to Blogger edit html and find these sentences.Now replace these sentences with your own descriptions.This theme is Bloggerized by Lasantha Bandara - Premiumbloggertemplates.com.

  • This is default featured slide 3 title

    Go to Blogger edit html and find these sentences.Now replace these sentences with your own descriptions.This theme is Bloggerized by Lasantha Bandara - Premiumbloggertemplates.com.

  • This is default featured slide 4 title

    Go to Blogger edit html and find these sentences.Now replace these sentences with your own descriptions.This theme is Bloggerized by Lasantha Bandara - Premiumbloggertemplates.com.

  • This is default featured slide 5 title

    Go to Blogger edit html and find these sentences.Now replace these sentences with your own descriptions.This theme is Bloggerized by Lasantha Bandara - Premiumbloggertemplates.com.

Monday, November 7, 2022

Field Quantization zero point energy

Taking up the eigenvalue equation for $\hat{H}(\hat{a}\vert n \rangle)$

\begin{equation} \hat{H} \left(\hat{a} \vert n \rangle \right)=  \left( E_n - \hbar\omega \right) \left( \hat{a} \vert n \rangle \right) \end{equation}

Applying the annihilation operator repeatedly the energy eigenvalue will decrease in integer multiples of $\hbar \omega$, the energy of harmonic oscillator must always be positive, therefore exists a lowest energy eigenvalue corresponding to eigenstate $\vert 0 \rangle$. The eigenvalue equation for the ground state is:

\begin{equation}\require{cancel} \hat{H}\vert 0 \rangle = \hbar\omega \left( \hat{a}^\dagger \hat{a} + \frac{1}{2} \right) \vert 0 \rangle = \cancelto{0}{ \hbar\omega \hat{n}\vert 0 \rangle} + \frac{1}{2}\hbar\omega \vert 0 \rangle = \frac{1}{2}\hbar\omega \vert 0 \rangle  \end{equation}

So the lowest energy eigenvalue is $E_0 = \cfrac{\hbar\omega}{2}$. Since $E_{n+1}= E_n + \hbar\omega$, the energy eigenvalues are:

\begin{equation}E_n = \hbar\omega \left(  n + \frac{1}{2} \right)  \end{equation}


Acknowledgement

I would like to thank Dr. Carlos Herman Wiechers Medina for their support, this post is based on the notes from the Quantum Optics class.

Share:

Friday, November 4, 2022

Field Quantization. Annihilation and Creation operators

Taking up the Hamiltonian equation from Field Quantization. Hamiltonian for a single-mode field

\begin{equation} H = \frac{1}{2} \left( p^2 + \omega^2 q^2  \right) \end{equation}

Where $q$ and $p$ are the canonical variables. To make a quantum approach  we just replace them with the respective operator $\hat{q}$ and $\hat{p}$, which must satisfy the canonical commutation relation:

\begin{equation} \left[ \hat{q},\hat{p} \right]=i\hbar \hat{I} \equiv i\hbar \end{equation}

With these operators the Hamiltonian transforms into the operator:

\begin{equation} \hat{H} = \frac{1}{2} \left( \hat{p} ^2 + \omega^2 \hat{q} ^2  \right)  \end{equation}

Here is convenient to introduce the non-Hermitian annihilation $\hat{a}$ and creation $\hat{a} ^\dagger$ operators given by:

\begin{equation} \hat{a} = (2 \hbar \omega)^{-1/2} (\omega \hat{q}+ i\hat{p}) \end{equation} \begin{equation} \hat{a} ^\dagger = (2 \hbar \omega)^{-1/2} (\omega \hat{q}- i\hat{p}) \end{equation}

These satisfies the commutation relation: 

\begin{equation}  \left[ \hat{a},\hat{a} ^\dagger \right] =  \hat{a} \hat{a} ^\dagger -  \hat{a}^\dagger \hat{a}= 1 \end{equation}

Noting that

\begin{align*} \hat{a} ^\dagger \hat{a} &= (2 \hbar \omega)^{-1/2} (\omega \hat{q}- i\hat{p})(2 \hbar \omega)^{-1/2} (\omega \hat{q}+ i\hat{p}) =  \frac{1}{2 \hbar \omega}\left[  \omega^2\hat{q}^2 + i\omega\hat{q}\hat{p}-i\omega\hat{p}\hat{q}+\hat{p}^2  \right] \\ \\ &=  \frac{1}{2 \hbar \omega}\left[  \omega^2\hat{q}^2 + i\omega \left[ \hat{q},\hat{p} \right]+\hat{p}^2  \right] =  \frac{1}{2 \hbar \omega}\left[  \omega^2\hat{q}^2 - \omega\hbar +\hat{p}^2  \right] = \frac{1}{\hbar \omega} \frac{1}{2} \left( \hat{p}^2 +  \omega^2\hat{q}^2 \right)  - \frac{1}{2} \\ \\ &= \frac{1}{\hbar \omega}\hat{H}-\frac{1}{2} \end{align*}

So, the Hamiltonian operator can be defined as:

\begin{equation} \hat{H} = \hbar\omega \left(  \hat{a} ^\dagger \hat{a} + \frac{1}{2} \right) \end{equation}

Now we can describe the energy eigenvalues. We denote $\vert n \rangle$ as energy eigenstate of the single mode field with eigenvalue $E_n$ such that:

\begin{equation} \hat{H}\vert n \rangle =  \hbar\omega \left(  \hat{a} ^\dagger \hat{a} + \frac{1}{2} \right) \vert n \rangle = E_n \vert n \rangle \end{equation}

The operator $\hat{a}^\dagger \hat{a}$ has a great importance and is called number operator $\hat{n}$. We will generate the eigenvalue equations for $\hat{a}^\dagger \vert n \rangle$ and $\hat{a} \vert n \rangle$ to appreciate the effect of the operators in the energy level and understand why they are called that. Multiplying Eq. (8) by  $\hat{a}^\dagger$ we obtain:

\begin{equation*} \hbar\omega \left( \hat{a} ^\dagger \hat{a} ^\dagger \hat{a} + \frac{1}{2}\hat{a} ^\dagger \right) \vert n \rangle =  E_n \hat{a}^\dagger \vert n \rangle \end{equation*}

\begin{equation*} \hbar\omega \left( \hat{a} ^\dagger \left(\hat{a}\hat{a}^\dagger -1 \right) + \frac{1}{2}\hat{a} ^\dagger \right) \vert n \rangle =  E_n \hat{a}^\dagger \vert n \rangle \end{equation*}

\begin{equation*} \hbar\omega \left( \hat{a} ^\dagger\hat{a}\hat{a}^\dagger + \frac{1}{2}\hat{a} ^\dagger \right) \vert n \rangle =   E_n  \hat{a}^\dagger \vert n \rangle +  \hbar\omega  \hat{a}^\dagger \vert n \rangle \end{equation*}

\begin{equation*} \hbar\omega \left( \hat{a} ^\dagger\hat{a} + \frac{1}{2} \right) \left(\hat{a}^\dagger \vert n \rangle \right)=  \left( E_n + \hbar\omega \right) \left( \hat{a}^\dagger \vert n \rangle \right) \end{equation*}

\begin{equation} \Rightarrow \hat{H} \left(\hat{a}^\dagger \vert n \rangle \right)=  \left( E_n + \hbar\omega \right) \left( \hat{a}^\dagger \vert n \rangle \right) \end{equation}

This is the equation for the eigenstate  $\hat{a}^\dagger \vert n \rangle$, it has energy eigenvalue of $E_n + \hbar \omega$. We can interpret this as if the operator $\hat{a}^\dagger$ created one quantum of energy $\hbar \omega$, that is why it is called as the creation operator. In the same way, we can multiply Eq. (8) by $\hat{a}$ to obtain the equation for the eigenstate $\hat{a}\vert n \rangle$:

\begin{equation} \hat{H} \left(\hat{a} \vert n \rangle \right)=  \left( E_n - \hbar\omega \right) \left( \hat{a} \vert n \rangle \right) \end{equation}

Analogous to the previous case, we can interpret it as if the operator $\hat{a}$ eliminated or annihilated one quantum of energy $\hbar \omega$, that is why it is called as the annihilation operator. 

For the states $\hat{a}\vert n \rangle$, $\hat{a}^\dagger \vert n \rangle$ and $\hat{n} \vert n \rangle$ we have:

\begin{equation}\hat{a}\vert n \rangle = c_n \vert n-1 \rangle \end{equation}

\begin{equation}\hat{a}^\dagger \vert n \rangle = d_n \vert n+1 \rangle \end{equation}

\begin{equation}\hat{n} \vert n \rangle = n \vert n \rangle \end{equation}

Where $c_n$ and $d_n$ are constants. The number of states must be normalized, i.e. $\langle n \vert n \rangle = 1$. The inner product of  $\hat{a}\vert n \rangle$ with itself is:

\begin{equation} (\langle n \vert \hat{a}^\dagger)(\hat{a}\vert n \rangle) = \langle n \vert \hat{a}^\dagger \hat{a} \vert n \rangle = \langle n \vert \hat{n} \vert n \rangle = n \langle n \vert n \rangle = n \end{equation}

Also

\begin{equation} (\langle n \vert \hat{a}^\dagger)(\hat{a}\vert n \rangle) = \langle n-1 \vert c_n^* c_n  \vert n-1 \rangle = \vert c_n \vert ^2 \langle n-1 \vert n-1 \rangle = \vert c_n \vert ^2 \end{equation}

Thus $c_n = \sqrt{n}$ and

\begin{equation} \boxed{ \hat{a}\vert n \rangle = \sqrt{n} \vert n-1 \rangle} \end{equation}

In the same way, the inner product of  $\hat{a}^\dagger \vert n \rangle$ with itself is:

\begin{equation} (\langle n \vert \hat{a})(\hat{a}^\dagger \vert n \rangle) = \langle n \vert \hat{a} \hat{a}^\dagger \vert n \rangle = \langle n \vert (\hat{a}^\dagger\hat{a}+1) \vert n \rangle = \langle n \vert \hat{n} \vert n \rangle +  \langle n \vert  n \rangle =  n + 1\end{equation}

Also

\begin{equation} (\langle n \vert \hat{a})(\hat{a}^\dagger \vert n \rangle) = \langle n+1 \vert d_n^* d_n \vert n+1 \rangle = \vert d_n \vert ^2 \langle n+1 \vert n+1 \rangle = \vert d_n \vert ^2 \end{equation}

Thus $d_n = \sqrt{n+1}$ and

\begin{equation}\boxed{ \hat{a}^\dagger \vert n \rangle = \sqrt{n+1} \vert n+1 \rangle} \end{equation}

Acknowledgement

I would like to thank Dr. Carlos Herman Wiechers Medina for their support, this post is based on the notes from the Quantum Optics class.

Share:

Thursday, November 3, 2022

Field Quantization. Hamiltonian for a single-mode field

We have the case of a radiant field confined in one dimensional cavity along the z-axis with perfectly conducting walls at  $z = 0$ and $z = L$, so that the electric field vanish in the boundaries as shown in:


Maxwell's equations without sources are:

\begin{equation} \nabla \times \textbf{E} = \frac{\partial \textbf{B}}{\partial t}  \end{equation}

\begin{equation} \nabla \times \textbf{B} = \mu_0 \varepsilon_0 \frac{\partial \textbf{E}}{\partial t}  \end{equation}

\begin{equation} \nabla \cdot \textbf{B} = 0  \end{equation}

\begin{equation}  \nabla \cdot \textbf{E} = 0  \end{equation}

The field is polarized in x-direction, i.e. $\textbf{E}(\textbf{r},t) = \mathbf{e}_x  E_x(z,t)$, with $\textbf{e}_x $ an unit polarization vector. A field that satisfies Maxwell's equations and boundary conditions is:

\begin{equation} E_x(z,t)=\left( \frac{2\omega^{2}}{V\varepsilon_0} \right)^{1/2}q(t) \text{sin}(kz)  \end{equation}

With $\omega$ the frequency of the mode, $k=\cfrac{\omega}{c}$ the wave number, $V$ the effective volume of the cavity and $q(t)$ the canonical position. We can not have all frequencies due to the boundary condition at $z=L$, this only allowed frequencies $\omega_m = c \cfrac{m\pi}{L}, \quad m=1,2,\cdots$. From Eq. (2) and Eq. (5) we obtain: 

\begin{equation*} \textbf{e}_x \left( \partial_y B_z - \partial_z B_y  \right) + \textbf{e}_y \left( \partial_z B_x - \partial_x B_z  \right) + \textbf{e}_z \left( \partial_x B_y - \partial_y B_x  \right) = \textbf{e}_x \left( \mu_0\varepsilon_0 \partial_t E_x \right) \\ \partial_y B_z - \partial_z B_y = \mu_0\varepsilon_0 \left( \frac{2\omega^{2}}{V\varepsilon_0} \right)^{1/2} \text{sin}(kz) \partial_t q =  \mu_0\varepsilon_0 \left( \frac{2\omega^{2}}{V\varepsilon_0} \right)^{1/2} \dot{q}(t) \text{sin}(kz)  \\  - \partial_z B_y = \mu_0\varepsilon_0 \left( \frac{2\omega^{2}}{V\varepsilon_0} \right)^{1/2} \dot{q}(t) \text{sin}(kz) \end{equation*}

\begin{equation} \Rightarrow  B_y (z,t) = \frac{\mu_0\varepsilon_0}{k} \left( \frac{2\omega^{2}}{V\varepsilon_0} \right)^{1/2} \dot{q}(t) \text{cos}(kz) \end{equation}

The Hamiltonian of the field described above is:

\begin{equation} H=\frac{1}{2}\int dV \left[ \varepsilon_0 E_x^{2}(z,t) + \frac{1}{\mu_0}B_y^{2}(z,t) \right] \end{equation}

Substituting Eq. (5) and Eq. (6) in Eq. (7):

\begin{equation*} H=\frac{1}{2} \left[  \varepsilon_0 \frac{2\omega^{2}}{V\varepsilon_0} q^2(t) \int dV \text{sin}^2(kz)  + \frac{1}{\mu_0} \frac{\mu_0^2 \varepsilon_0^2}{k^2} \frac{2\omega^{2}}{V\varepsilon_0} \dot{q}^2(t) \int dV \text{cos}^2(kz) \right] \end{equation*}

It is important to emphasize that $V$ in the equations for $E_x$ and $B_y$ is the volume of the cavity, i.e. it is a constant. Noting that $k=\cfrac{\omega}{c}$ and $\mu_0\varepsilon_0 = \cfrac{1}{c^2}$

\begin{equation*} H=\frac{1}{2} \left[  \frac{2\omega^{2}}{V} q^2(t) \int dV \text{sin}^2(kz)  +   \frac{2}{V} \dot{q}^2(t) \int dV \text{cos}^2(kz) \right] \end{equation*}

For this case we have $\int dV = A\int_L dz$, so:

\begin{align*} H &= \frac{1}{2}A \left[  \frac{2\omega^{2}}{V} q^2(t) \int_L dz \; \text{sin}^2(kz)  +   \frac{2}{V} \dot{q}^2(t) \int_L dz \; \text{cos}^2(kz) \right] \\ \\ &= \frac{1}{2}A \left[ \frac{\omega^2 q^2(t)L}{V} +  \frac{\dot{q}^2(t) L}{V}  \right]\end{align*}

Considering a particle of unit mass, i.e. the canonical momentum is $p(t) = \dot{q}(t)$ and noting that $V=AL$, the Hamiltonian results:

\begin{equation} \boxed{H = \frac{1}{2} \left( p^2 + \omega^2 q^2  \right)} \end{equation}


Acknowledgement

I would like to thank Dr. Carlos Herman Wiechers Medina for their support, this post is based on the notes from the Quantum Optics class.

Share:

Wednesday, November 2, 2022

Dirac's Notation

In quantum mechanics, we can describe "pure" quantum states using an n-dimensional vector or rank 1 tensor, this is called ket and is represented with: $$  \vert \Psi  \rangle  =  \begin{pmatrix} \alpha_1 \\ \vdots \\ \alpha_n \end{pmatrix} $$

We can form the corresponding bra (dual space) transposing the ket and complex conjugating every component: $$  \langle \Psi  \vert  =  \begin{pmatrix} \alpha_1^* & \cdots & \alpha_n^*  \end{pmatrix} $$ At first instance we can define some products using bras and kets, the inner product, outer product and tensorial product.

Inner product:  \begin{equation*} \langle \Psi  \vert \Psi  \rangle  =  \begin{pmatrix} \alpha_1^* & \cdots & \alpha_n^* \end{pmatrix} \begin{pmatrix} \alpha_1 \\ \vdots \\ \alpha_n \end{pmatrix} =  \alpha_1^*  \alpha_1 + \cdots \alpha_n^*  \alpha_n =  \vert \alpha_1 \vert ^2 + \cdots + \vert \alpha_n \vert ^2  \end{equation*}   

Outer product: \begin{align*} \vert  \Psi \rangle \langle  \Psi  \vert  &=   \begin{pmatrix} \alpha_1 \\ \vdots \\ \alpha_n \end{pmatrix} \begin{pmatrix} \alpha_1^* & \cdots & \alpha_n^* \end{pmatrix} =  \begin{pmatrix}  \alpha_1  \alpha_1^* &  \alpha_1  \alpha_2^*  & \cdots &  \alpha_1  \alpha_n^* \\  \alpha_2  \alpha_1^* &  \alpha_2  \alpha_2^*  & \cdots &  \alpha_2  \alpha_n^* \\ \vdots & \vdots & \ddots & \vdots \\  \alpha_n  \alpha_1^* &  \alpha_n  \alpha_2^*  & \cdots &  \alpha_n  \alpha_n^* \end{pmatrix} \\ \\  &=   \begin{pmatrix}  \vert \alpha_1 \vert ^2 &  \alpha_1  \alpha_2^*  & \cdots &  \alpha_1  \alpha_n^* \\  \alpha_2  \alpha_1^* &  \vert \alpha_2 \vert ^2  & \cdots &  \alpha_2  \alpha_n^* \\ \vdots & \vdots & \ddots & \vdots \\  \alpha_n  \alpha_1^* &  \alpha_n  \alpha_2^*  & \cdots & \vert \alpha_n \vert ^2  \end{pmatrix} \end{align*}


Tensorial product: $ \vert \alpha \rangle \otimes \vert \beta \rangle \equiv \vert \alpha \rangle \vert \beta \rangle \equiv  \vert \alpha , \beta \rangle \equiv  \vert \alpha \beta \rangle $. Supposing 2-dimensional kets $ \vert \alpha \rangle = \big(\begin{smallmatrix} \alpha_1 \\ \alpha_2 \end{smallmatrix}\big) $ and $\vert \beta \rangle = \big(\begin{smallmatrix} \beta_1 \\ \beta_2 \end{smallmatrix}\big) $ we can define the tensorial product as:

\begin{align*} \vert \alpha \rangle \otimes \vert \beta \rangle  &=   \begin{pmatrix} \alpha_1 \\ \alpha_2 \end{pmatrix} \otimes \begin{pmatrix} \beta_1 \\ \beta_2 \end{pmatrix} =  \begin{pmatrix} \alpha_1 \begin{pmatrix} \beta_1 \\ \beta_2  \end{pmatrix} \\ \alpha_2  \begin{pmatrix} \beta_1 \\ \beta_2  \end{pmatrix} \end{pmatrix} = \begin{pmatrix} \alpha_1 \beta_1 \\  \alpha_1 \beta_2  \\  \alpha_2 \beta_1 \\  \alpha_2 \beta_2  \end{pmatrix}  \end{align*} 






Share:

Monday, October 31, 2022

About Myself

Hello my name is David Angel Alba Bonilla, a physics engineering student in Universidad de Guanajuato. I like to know how the nature and the technology works using physics, mathematics and science in general. I want to expose my knowledge, my reasonings, and my love of the physics with everybody I can. You may think physics is so difficult, it's useless in daily life, or the physics is only "use formulas",  I will explain why all of these ideas are wrong on this blog.


I hope you enjoy the blog and the information be useful for all of you.


Share:

BTemplates.com

Powered by Blogger.

Text Widget

About Me

My photo
I am an Engineering Physicist, graduated with academic excellence as the top of my class. I have experience programming in several languages, including C++, MATLAB, and especially Python. I have worked on projects in image and signal processing, as well as in machine learning and data analysis.

Field Quantization zero point energy

Taking up the eigenvalue equation for $\hat{H}(\hat{a}\vert n \rangle)$ \begin{equation} \hat{H} \left(\hat{a} \vert n \rangle \right)=  \le...

Search This Blog

Pages

Unordered List

Recent Posts

Recent Posts

Unordered List

Pages

Theme Support