In quantum mechanics, we can describe "pure" quantum states using an n-dimensional vector or rank 1 tensor, this is called ket and is represented with: $$ \vert \Psi \rangle = \begin{pmatrix} \alpha_1 \\ \vdots \\ \alpha_n \end{pmatrix} $$
We can form the corresponding bra (dual space) transposing the ket and complex conjugating every component: $$ \langle \Psi \vert = \begin{pmatrix} \alpha_1^* & \cdots & \alpha_n^* \end{pmatrix} $$ At first instance we can define some products using bras and kets, the inner product, outer product and tensorial product.
Inner product: \begin{equation*} \langle \Psi \vert \Psi \rangle = \begin{pmatrix} \alpha_1^* & \cdots & \alpha_n^* \end{pmatrix} \begin{pmatrix} \alpha_1 \\ \vdots \\ \alpha_n \end{pmatrix} = \alpha_1^* \alpha_1 + \cdots \alpha_n^* \alpha_n = \vert \alpha_1 \vert ^2 + \cdots + \vert \alpha_n \vert ^2 \end{equation*}
Outer product: \begin{align*} \vert \Psi \rangle \langle \Psi \vert &= \begin{pmatrix} \alpha_1 \\ \vdots \\ \alpha_n \end{pmatrix} \begin{pmatrix} \alpha_1^* & \cdots & \alpha_n^* \end{pmatrix} = \begin{pmatrix} \alpha_1 \alpha_1^* & \alpha_1 \alpha_2^* & \cdots & \alpha_1 \alpha_n^* \\ \alpha_2 \alpha_1^* & \alpha_2 \alpha_2^* & \cdots & \alpha_2 \alpha_n^* \\ \vdots & \vdots & \ddots & \vdots \\ \alpha_n \alpha_1^* & \alpha_n \alpha_2^* & \cdots & \alpha_n \alpha_n^* \end{pmatrix} \\ \\ &= \begin{pmatrix} \vert \alpha_1 \vert ^2 & \alpha_1 \alpha_2^* & \cdots & \alpha_1 \alpha_n^* \\ \alpha_2 \alpha_1^* & \vert \alpha_2 \vert ^2 & \cdots & \alpha_2 \alpha_n^* \\ \vdots & \vdots & \ddots & \vdots \\ \alpha_n \alpha_1^* & \alpha_n \alpha_2^* & \cdots & \vert \alpha_n \vert ^2 \end{pmatrix} \end{align*}
Tensorial product: $ \vert \alpha \rangle \otimes \vert \beta \rangle \equiv \vert \alpha \rangle \vert \beta \rangle \equiv \vert \alpha , \beta \rangle \equiv \vert \alpha \beta \rangle $. Supposing 2-dimensional kets $ \vert \alpha \rangle = \big(\begin{smallmatrix} \alpha_1 \\ \alpha_2 \end{smallmatrix}\big) $ and $\vert \beta \rangle = \big(\begin{smallmatrix} \beta_1 \\ \beta_2 \end{smallmatrix}\big) $ we can define the tensorial product as:
\begin{align*} \vert \alpha \rangle \otimes \vert \beta \rangle &= \begin{pmatrix} \alpha_1 \\ \alpha_2 \end{pmatrix} \otimes \begin{pmatrix} \beta_1 \\ \beta_2 \end{pmatrix} = \begin{pmatrix} \alpha_1 \begin{pmatrix} \beta_1 \\ \beta_2 \end{pmatrix} \\ \alpha_2 \begin{pmatrix} \beta_1 \\ \beta_2 \end{pmatrix} \end{pmatrix} = \begin{pmatrix} \alpha_1 \beta_1 \\ \alpha_1 \beta_2 \\ \alpha_2 \beta_1 \\ \alpha_2 \beta_2 \end{pmatrix} \end{align*}







0 comments:
Post a Comment